为促进我国热处理技术的发展,我们应全面了解热处理技术的现状和水平,掌握其发展趋势,大力发展先进的热处理新技术、新工艺、新材料、新设备,用高新技术改造传统的热处理技术,实现“优质、高效、节能、降耗、无污染、低成本、专业化生产”,主要趋势如下。
在新的加热源中,以高能率热源最为引人注目。高能率热处理在减小工件变形、获得特殊组织性能和表面状态方面具有很大的优越性,可以提高工件表面的耐磨性、耐蚀性,延长其使用寿命。高能率热处理近年来发展很快,是金属材料表面改性技术最活跃的领域之一,其中激光热处理和离子注入表面改性技术在国外已进入生产阶段。我国一汽、二汽、西安内燃机配件厂等单位,都已建立了汽车发动机缸套的激光表面淬火生产线,但由于高能率热处理的设备费用昂贵等原因,目前我国尚未大量应用,但其发展前景广阔,今后将会成为很有前途的热处理工艺。
在热处理时实现少无氧化加热,是减少金属氧化损耗、保证工件表面质量的必备条件,而采用真空和可控气氛则是实现少无氧化加热的主要途径。在表面加热方面,感应加热具有加热速度快、工件表面氧化脱碳少、变形小、节能、公害小、生产率高、易实现机械化和自动化等优点,是一种经济节能的表面加热手段,主要用于工件的表面加热淬火。高能率加热具有加热速度快、表面质量好、变形小、能耗低、无污
淬火介质是实施淬火工艺过程的重要保证,对热处理后工件的质量影响很大。正确选择和合理使用淬火介质,可以减小工件变形,防止开裂,保证达到所要求的组织和性能。
在热处理生产中,常用的淬火介质有水、油、盐类等,它们各有优缺点。如用油淬火,虽然对减小工件变形和开裂很有利,但对淬透性较差或尺寸较大的工件淬不硬,且油易老化,对周围环境的污染大,有发生火灾的危险。为此,要对原有淬火介质的性能进行改进,并积极开发应用冷却速度介于水和油之间、并可根据需要调整冷却速度,同时又经济、安全、无污染的新型淬火介质。
无机物水溶液淬火剂和有机聚合物淬火剂是新型淬火介质的发展重点,特别是有机聚合物淬火剂的研究和应用尤为引人注目,其优点是无毒、无烟、无臭、无腐蚀、不燃烧、抗老化、使用安全可靠、且冷却性能好、冷却速度可调、适用范围广、工件淬硬均匀、可明显减少淬火变形和开裂倾向。从提高工件质量、改善劳动条件、避免火灾和节能的角度考虑,有机聚合物淬火剂有逐步取代淬火油的趋势,是淬火介质的主要发展方向,尤其是对于水淬开裂、变形大,油淬不硬的工件,采用有机聚合物淬火剂更是成功的选择。目前,世界上应用最多的是聚烷撑乙二醇(PAG类)淬火剂,它具有逆溶性,冷却速度在盐水和冷油之间,适用的淬火钢种范围广,使用寿命长。还有聚丙烯酸盐(ACR类)淬火剂、聚氧化吡咯烷酮(PVP类)淬火剂和聚乙基恶唑啉(PEO类)淬火剂等,也获得一定程度的应用。
多年来,我国在淬火介质的研究和应用方面,做了大量的工作,取得了一定的成绩,基本上满足了热处理生产的需要,但与国外的先进水平相比差距很大,并落后于热处理其它技术领域的发展,是热处理行业中的一个薄弱环节,今后应当给予重视和加强。
为了使工件实现理想的冷却,获得最佳的淬火效果,除根据工件所用的材料、技术要求、服役条件等,来合理选用淬火介质外,还需不断改进现有的淬火方法,并采用新的淬火方法。如采用高压气冷淬火法、强烈淬火法、流态床冷却淬火法、水空气混合剂冷却法、沸腾水淬火法、热油淬火法、深冷处理法等,均能改善淬火介质的冷却性能,使工件冷却均匀,获得很好的淬硬效果,有效地减少工件的变形和开裂。
低碳马氏体是低碳低合金钢经强烈淬火急冷后得到的一种显微组织结构,具有优良的综合机械性能以及良好的冷加工性和可焊性。近二十年来,我国开展了低碳马氏体及其应用研究工作,取得了很大的成绩。例如,低碳马氏体的强度比中碳调质钢高1/3以上,且综合性能良好,用来代替某些中碳调质钢(如高强度螺栓等),可使构件重量成倍减轻;低碳马氏体还具有很高的耐磨性能,可用来制造某些要求耐磨性好的零件(如拖拉机履带板等)。总之,低碳马氏体在石油、煤炭、铁道、汽车、拖拉机等部门应用广泛,收到了提高性能、减轻重量、延长使用寿命、简化工艺、节约能源、节约合金元素、降低成本等技术经济效果。
贝氏体钢能够空冷自硬,并将冶金热加工工序与产品成型制造工序相连接,具有良好的强韧性配合、生产工序简单、节约能源、污染少、成本低等优点,因而引起广泛的重视。至今国际上空冷贝氏体钢系列有两类:一类是以英国P.B.Pickering为首于50年代发明的MO-B系贝氏体钢,但因钼的价格昂贵而使其发展受到限制;另一类是以我国清华大学方鸿生教授为首于70年代初期发明的MN-B系贝氏体钢,现己发展有低碳、中低碳、中碳、中高碳系列十多个钢种,应用到耐磨钢球、衬板、齿板、冲击锤、刮板、截齿、离心铸管、汽车前轴、连杆、液压支架等,取得了很好的技术效果和显著的经济效益,成为贝氏体钢发展的重要方向。目前我国MN-B系贝氏体钢己达到年产15万吨的规模,在“九五”末期将达到70万吨/年,占到全国特殊钢产量的5%~10%。
大连铁道学院戚正风教授等研制成功无莱氏体高速钢,其合金元素与一般高速钢相同,碳含量则降低到钢水凝固时不形成共晶碳化物(莱氏体)、而又能在淬火回火后整体具有足够的强度、韧性与硬度的水平。这种钢加工成刀具后,通过渗碳,使表层得到≥70HRC的高硬度和600℃4次回火后仍能保持 67HRC的红硬性,同时得到55HRC高强韧性的心部,可使刀具使用寿命提高几倍。
70年代我国与美国、芬兰等国家同时研制成功A-B球铁,并获得了实际应用,由于A-B球铁既具有较高的强度和硬度,又具有良好的塑性和韧性,因而被广泛用于汽车、拖拉机、内燃机的齿轮、连杆、轴类等结构件以及矿山磨球、锤头等耐磨零件。80年代以后,国内外又从A-B球铁化学成分与热处理工艺两个方面深入进行研究。前者通过提高合金成份来得到铸态A-B球铁,以期取消成本高、工效低的等温淬火工艺;后者则努力完善热处理工艺,提高机械化和自动化水平,以提高生产效率。